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A normed linear space, E, has property P if for every =>0 there is a $>0 such
that for all x # E there is a z, with |z|�=, such that B[0, 1+$] & B[x, 1]�B[z, 1].
This paper contains a simple proof that an infinite dimensional L1(X, 7, +) space
does not satisfy property P. � 1999 Academic Press
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1. INTRODUCTION

Mach [7, 8] introduced a condition he called property P1 , which is
more restrictive than property P (see the definition at the end of the paper)
that appears in the theory of simultaneous approximation of functions and
in the approximation of compact operators (e.g., [4, 6, 7, 9]). Mach
showed that uniformly convex spaces and spaces of continuous functions
satisfy the condition. He asked [8] if L1 spaces also satisfy his property.
Kamal [5] gave an intricate computation to show that l1 does not satisfy
Mach's property. By referencing theorems on the attainment of ``compact
widths'' and on embeddings of L1[0, 1] in L1(X, 7, +), he showed that for
(X, 7, +) not purely atomic, L1(X, 7, +) also does not satisfy Mach's property.

This note contains an elementary, self-contained proof of Kamal's theorems.
That is, we show that infinite dimensional L1 spaces do not satisfy property
P (and hence also do not satisfy Mach's property).

2. PRELIMINARIES

This section contains some immediate consequences of property P. The
proof of Lemma 2.2 is included for completeness.

Article ID jath.1999.3362, available online at http:��www.idealibrary.com on

160
0021-9045�99 �30.00
Copyright � 1999 by Academic Press
All rights of reproduction in any form reserved.



Let E be a normed linear space. For x # E, the closed sphere of radius
r about x is written B[x, r].

Definition. E has property P if for every =>0 there is a $>0 such that
for all x # E there is a z # B[0, =] such that B[0, 1+$] & B[x, 1]�B[z, 1].

Let $=, E be the supremum of the $'s satisfying the definition of property P.

Lemma 2.1. Let E have property P.

(i) If $=, E>$, then $ satisfies the definition of property P.
(ii) :�= implies $:, E�$=, E .

(iii) If F is a norm one complemented subspace of E, then F has
property P and $=, E�$=, F .

(iv) If G is isometrically isomorphic to E, then G has property P and
$=, E=$=, G .

Lemma 2.2. If L1=L1(X, 7, +) has dimension greater than or equal n,
then L1 contains a norm one complemented subspace that is isometrically
isomorphic to ln

1 .

Proof. 7 contains n disjoint sets, [Ui]n
i=1 , of positive finite measure.

For f # L1 , let

Lf (x)={
1

+(Ui) |
Ui

f d+

0

for x # Ui ;

otherwise.

Then L is a norm one projection onto the space, F, of functions constant
on each Ui and equal 0 on the complement of �n

i=1 Ui . Let

ui (x)={
1

+(Ui)
0

for x # Ui ;

otherwise.

Let [ei]n
i=1 be the canonical basis for ln

1 (i.e., the i th coordinate of ei is 1;
all others are 0). The linear mapping that takes ui to ei is an isometric
isomorphism of F onto ln

1 . K

3. PROPERTY P AND L1 SPACES

Throughout this section let n=2k+1 be an odd integer.

Lemma 3.1. Put x=(1�n, 1�n, ..., 1�n) # ln
1 . If B[0, 1+(1�n)] & B[x, 1]

�B[z, 1], then z=x.
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Proof. We first show that zk+1�1�n. Put u=(0, ..., 0, 2�n, 2�n, ..., 2�n)
and v=(2�n, 2�n, ..., 2�n, 0, 0, ..., 0), where each of u and v has k coor-
dinates equal 0, and k+1 equal 2�n.

We compute that |u|=1+(1�n)=|v|, and |u&x|=1=|v&x|. That is,
both u and v are in B[0, 1+(1�n)] & B[x, 1].

If u # B[z, 1], then |z1 |+|z2 |+ } } } +|zk |+((2�n)&zk+1)+((2�n)&zk+2)
+ } } } + ((2�n) & zn) �1 , and \z1 \ z2 } } } \ zk+zk+1+zk+2+ } } } +
zn�1�n.

Similarly v # B[z, 1] implies, z1+z2 } } } +zk+zk+1\zk+2+ } } } \zn�1�n.
Choosing all minus signs and adding the last two inequalities yields

zk+1�1�n. The same reasoning shows each zi�1�n.
Since 0 # B[0, 1+(1�n)] & B[x, 1], we must have that |z&0|�1, and so

each zi=1�n. K

Corollary 3.2. $=, l n
1
<1�n for all 0<=<1.

Theorem 3.3. If L1=L1(X, 7, +) is infinite dimensional, then L1 does
not have property P.

Proof. Fix 1>=>0. From Lemma 2.1, 2.2, and Corollary 3.2 for all odd
integers n, we have $=, L1

�$=, ln
1
<1�n. So $=, L1

=0, which is not compatible
with property P. K

Comment. A normed linear space, E, has Mach's property (or property
P1) if for every =>0 and each r>0 there is a $>0 such that for all x and
y in E and all 0<%<$ there is a z # B[x, =] such that B(x, r+$) &
B( y, r+%)�B(z, r+%). Here B( } , } ) represents an open sphere. Property
P1 is the property referred to in the Introduction. If E has Mach's property,
then it also satisfies property P.
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